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Abstract

Recent work in open-domain question answer-
ing (ODQA) has shown that adversarial poi-
soning of the search collection can cause
large drops in accuracy for production systems.
However, little to no work has proposed meth-
ods to defend against these attacks. To do so,
we rely on the intuition that redundant informa-
tion often exists in large corpora. To find it, we
introduce a method that uses query augmen-
tation to search for a diverse set of passages
that could answer the original question but are
less likely to have been poisoned. We integrate
these new passages into the model through the
design of a novel confidence method, com-
paring the predicted answer to its appearance
in the retrieved contexts (what we call Confi-
dence from Answer Redundancy, i.e. CAR).
Together these methods allow for a simple but
effective way to defend against poisoning at-
tacks that provides gains of nearly 20% ex-
act match across varying levels of data poison-
ing/knowledge conflicts.

1 Introduction

Open-domain question answering (ODQA) is the
task of answering a given question, based on evi-
dence from a large corpus of documents. In order
to do so, a system generally first retrieves a smaller
subset of documents (typically between 5-100) and
then answers the question based on those docu-
ments. Previous research in ODQA has resulted in
many well-curated datasets that evaluate a model’s
ability to answer questions on a wide array of top-
ics (Kwiatkowski et al., 2019; Joshi et al., 2017;
Dunn et al., 2017; Yang et al., 2015).

However, most internet users search across less-
carefully curated sources, where malicious actors
are able to affect articles that may be used by an
ODQA system (Figure 1). Furthermore, even in
curated knowledge sources like Wikipedia, we fre-
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Figure 1: An example of a poisoning attack on an open-
domain question answering (ODQA) pipeline with our
method (Lower) vs a standard system (Upper). The
passages have been adversarially poisoned to replace
Obama’s correct birthplace to be incorrect. Our pro-
posed defense method uses query augmentation to find
new contexts that are less likely to be poisoned (#4 and
#5). It then uses a novel confidence-based aggregation
method (CAR) to predict the correct answer.

quently see attacks (e.g. malicious edits/fake pages)
that have even impacted production QA systems.1

Recent work has recognized the potential for bad
actors to influence automated knowledge-intensive
NLP systems that involve retrieval: Du et al. (2022)
explored how poisoned information affects auto-
mated fact verification systems using sparse non-
neural information retrieval systems, while Chen
et al. (2022) and Longpre et al. (2021) have studied
the role that knowledge conflicts play in ODQA

1For examples of disinformation attacks on popular entities
that motivate our approach see Appendix A or the “Reliability
of Wikipedia" or “Vandalism on Wikipedia" pages.
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pipelines, mainly for the sake of understanding
how these models use parametric vs non-parametric
knowledge rather than in the context of data poi-
soning. Although these papers (see Appendix D
for more) highlight the vulnerability of existing
methods, the problem of defending against data
poisoning or knowledge conflicts is still understud-
ied, with limited to no published efforts in the area.

Thus, we seek to show the effects of data poi-
soning and propose a simple but effective defense.
Building on the intuition that information is usually
available in multiple places and that it is unlikely
that all sources (or pages) will be poisoned, we pro-
pose a novel query augmentation scheme to gather
a larger set of diverse passages. We also propose a
new confidence method to decide when to use the
newly gathered contexts vs the original, which we
call Confidence from Answer Redundancy (CAR).

Our proposed approach involves no gradient up-
dates, can easily be applied to existing frameworks,
and uses a simple resolution approach to arrive at
the predicted answer. Together, our methods can
provide gains of nearly 20 points in exact match,
helping to reduce the negative effects of data poi-
soning and disinformation attacks on ODQA.

2 Experimental Details

We seek to mimic realistic disinformation attacks
on a curated knowledge source; thus, for our ex-
periments we use Wikipedia as the knowledge col-
lection for both original and augmented queries,
and simulate an attack on each question indepen-
dently. We follow Du et al. (2022) and poison the
most relevant articles returned by searching with
the question. We vary the amount of poisoned arti-
cles from 1 to 100, as 100 passages are given to the
models.2 Note that we do not poison the entire cor-
pus, as poisoning millions of documents is beyond
the scope of common disinformation attacks.

2.1 Data

For our experiments we use Natural Questions
(NQ) (Kwiatkowski et al., 2019) and TriviaQA
(Joshi et al., 2017), two popular datasets for open-
domain question answering. Furthermore, previ-
ous research on conflicts in ODQA has used these
datasets in their experiments (Chen et al., 2022).
The Natural Question dataset was gathered by col-
lecting real-user queries typed into Google Search,

2We also experimented with poisoning random passages
and found similar results (Appendix E)

while TriviaQA was collected by scraping question
and answer pairs from trivia websites, and then
matching the answers to Wikipedia passages.

We simulate the data poisoning through the code
available from Longpre et al. (2021), which in-
troduced the problem of knowledge conflicts in
ODQA. Instead of simply providing conflicts for
model analysis, we use them as adversarial poison-
ing strategies as they provide realistic fake answers
to the question. This method uses the answers to
the questions to suggest an entity of the same type,
using SpaCY NER (Honnibal and Montani, 2017),
which is then used to replace the correct answer in
the text. This allows for entity substitutions that
keep the semantic order of the context, such as
replacing dates with dates, people with people, etc.

2.2 Models

We use Fusion-in-Decoder (FiD), an encoder-
decoder architecture that generates an answer by
first retrieving and encoding N passages and then
concatenating them before passing them through
the decoder (Izacard and Grave, 2021). This model
uses the DPR bi-encoder architecture for retrieval
(Karpukhin et al., 2020). We also use the Atlas
model (Izacard et al., 2022), which is currently the
state-of-the-art model on Natural Questions and
TriviaQA. This model also uses fusion in the de-
coder and has a T5 backbone, but trains both the
question answering and retrieval end-to-end. For
detailed hyperparameters see Appendix B.

3 Proposed Method

3.1 Query Augmentation

We hypothesize that in cases of conflicting evi-
dence in large corpora for factoid based questions,
there will generally be more evidence for the cor-
rect answer than for incorrect ones. As an ex-
ample, imagine the question “Where was Barack
Obama born?" with a corresponding attack to his
Wikipedia page (see Figure 1). Since there exists
redundant information throughout Wikipedia, al-
ternate questions that find contexts on other pages
(such as his mother’s page, Ann Dunham) will still
be able to find the correct answer.

To create these alternate questions that will still
find the correct answer but with more diverse pas-
sages, we propose a query augmentation scheme
that has similarities to classical query expansion
in information retrieval (IR) (Singhal et al., 2001;
Carpineto and Romano, 2012). We generate these
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Figure 2: Number of new passages retrieved per aug-
mented question (e.g., a question in the 100 bin would
have 100 new contexts not retrieved by the original).
Natural Questions is on top and TriviaQA on bottom.

new questions for each original question by prompt-
ing GPT-3 (davinci-002) from Brown et al.
(2020). Note that these query augmentations are
not necessarily paraphrases as they strive to be as
different as possible while still leading to the cor-
rect answer. They are also not identical to classic
query expansion from IR either, as they do not in-
tend to solely broaden the query scope but rather to
find diverse contexts from questions of any scope.

For each query in the dataset, we prompt GPT-3
with the following: "Write 10 new wildly
diverse questions with different
words that have the same answer
as {Original Question}", thus generat-
ing approximately 10 augmented questions per
original question (c.f. Table 1 for three examples
of generations). Finally, we retrieve the 100 most
relevant contexts for those augmented questions.3

When we compare these newly retrieved pas-
sages to the passages retrieved by the original ques-
tion we find that they do provide a more diverse
set of passages. Figure 2 shows the distribution of
new passages retrieved, with almost all retrieving
at least 20 or more new passages and a substantial
amount having an entirely new set of 100 passages.

3Note if searching with the augmented questions retrieves
a passage from an article designated as poisoned we swap the
original text for the poisoned text following Du et al. (2022).

When was the last time anyone was on the moon?

When was the last time anybody walked on the moon?
When was the last manned mission to the moon?
When was the last time a human was on the moon?

In which year did Picasso die?

When did Picasso die?
How old was Picasso when he died?
What was Picasso’s cause of death?

What is the largest city in Turkey?

What city in Turkey has the most people?
What is the most populous city in Turkey?
What is the most urbanized city in Turkey?

Table 1: Examples of the question augmentation gen-
eration (Section 3.1) with the original question on top.

3.2 Confidence from Answer Redundancy
In order to identify the best augmented queries
with their corresponding new passages, we derive
a novel method, CAR, for measuring ODQA con-
fidence. CAR measures how often the predicted
answer string occurs in the retrieved contexts (usu-
ally 100 contexts). For example, if the predicted
answer appears only once in all 100 contexts, this
may mean that the retriever was not able to find
many documents relevant to the query, especially as
popular entities (those asked about in NQ and Trivi-
aQA) are generally found in many articles. Overall,
the more frequently the predicted answer appears
in the contexts, the more likely that the retrieval
was both successful and plentiful (e.g. redundant).

In practice, given a set of documents D, we set a
hyperparameter k to determine the cutoff for CAR
(in practice we use k = 5, found by tuning on the
dev set). If the model retrieves more than k unique
passages that contain the predicted answer string,
we classify the model as confident and vice versa.
We use this as part of our resolution method below.

3.3 Answer Resolution
We use the following methods to combine (or not
combine) the original question with the augmented
questions, with their shortened names in italics: (1)
use the original question only, e.g. the baseline
(2) randomly pick one new augmented question
(3) take a majority vote of the augmented ques-
tion’s predictions or (4) use answer redundancy, de-
scribed in the following paragraph. See Appendix J
for details on other methods we tried that underper-
formed and are excluded for clarity.

Our new method for answer resolution, redun-
dancy, uses CAR to effectively combine both the
original question and the new augmented questions.
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Figure 3: Main results showing the effect of data poisoning and various defense strategies using FiD (see Ap-
pendix C for ATLAS). Left shows TriviaQA while right shows Natural Questions. C stands for context.

We use CAR to decide whether to choose the origi-
nal question’s prediction, and if not, use a majority
vote over the predictions from the augmented ques-
tions that are confident (filtered using CAR). By
doing so, we retain performance from the original
question and passage set when confident, while
otherwise backing off to the augmentation.

All methods except original can use either the
original (Original C) or new (New C) contexts. Fur-
ther, majority vote and redundancy can use either
the new or original questions during inference (we
use original, after tuning c.f. Appendix B).

4 Results

Figure 3 highlights our key findings using the FiD
model (ATLAS results are similar, see Appendix C).
Following (Longpre et al., 2021; Chen et al., 2022),
all results are filtered by those that the model origi-
nally predicted correctly, thus making the original
method have by definition 100% EM at the 0-article
poisoning level. As expected, as the amount of
poisoned data given to the model increases, perfor-
mance decreases. We see that resolution methods
that use the new contexts (New C) outperform those
that use the original contexts, confirming the intu-
ition behind our proposed method. Furthermore,
we see that the redundancy resolution strategy out-
performs all other strategies, by up to 19.4% in
the TriviaQA setting (33.2% at 100 poisoned arti-
cles vs 13.8% baseline). Scores on NQ are lower
than TriviaQA, even with no poisoning, but still
improves up to 14% EM using our methods.

However, how many of these augmented ques-
tions are needed for this approach to work well?

To answer this, we include Figure 4 in Appendix F
with the overall trend being that as the number of
augmented queries increases, so does the perfor-
mance. Furthermore, it shows that even one aug-
mented query has gains over the baseline method,
allowing for a more compute efficient method at
the expensive of several points of performance.

We also explore why performance is non-zero
when the number of poisoned articles is equal to
the number of contexts the model receives. We
manually annotated 20 examples on TriviaQA that
FiD got correct at the 100-article poisoning set-
ting. We found that it is due to the model using
its parametric knowledge to correctly answer (65%
of the time), as the correct answer was not present
in any of the input documents, or due to answer
aliases (35%) that were not part of the answer set.
Examples of cases can be found in Appendix G.

5 Conclusion

Our work defends against data poisoning attacks
in open-domain question answering through two
novel methods: (1) the use of query augmentation
to find diverse passages that still correctly answer
the question and (2) the use of answer redundancy
as a strategy for model confidence in its prediction.
Our proposed methods do not involve any gradi-
ent updates and provide a significant performance
improvement. Thus, our work shows the effect
of data poisoning on state-of-the-art open-domain
question-answering systems and provides a way to
improve poisoned performance by almost 20 points
in exact match. We hope that this work encourages
future work in defending against poisoning attacks.



6 Limitations

Our work focuses on the TriviaQA and Natural
Questions benchmarks, which include questions
about popular entities in Wikipedia. As discussed
in Appendix A, our approach simulates real-world
common attacks which are the most frequent type
of attacks. However, for entities that appear less
often in the knowledge source (and are less likely to
be attacked), our approach will not be as effective.

We leave attacks on less-popularity entities to
future work, as we focus on the most frequently
and higher impact attacks, while also using datasets
that are standard in existing literature, e.g. Natural
Questions and TriviaQA.

Our work shows the impact that disinformation
attacks could have on Wikipedia and provides an
initial attempt to help remedy those attacks. We
note that our strategy does not have perfect accu-
racy and is still susceptible to attacks, e.g. if there is
no correct information in any context to be found, it
will be very difficult for ODQA systems to give the
correct answer. We welcome additional research to
improve the resistance of ODQA systems to adver-
sarial attacks.
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A Realism of Proposed Setting

We focus on data poisoning attacks to high to
medium popularity entities, as included in Triv-
iaQA and Natural Questions. But such attacks
realistic and have they happened before?

Due to the way that search engines work, any
data poisoning done at the time of indexing is able
to effect system performance until the data is re-
indexed. Thus, if one were to change a Wikipedia
page (or a personal website that was included in
an index) and that change was indexed, the data
would be poisoned until re-indexing.
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Figure 4: An ablation on the number of augmented
queries used for the redundancy resolution method on
Natural Questions 5-article poisoning setting. Note that
as the number of augmented queries increases, so does
the performance. Baseline performance is 17.5%.

Furthermore, because of the popularity of the
entities, data poisoning attacks are more common
(see “Vandalism on Wikipedia"). There have even
been many high profile attacks on popular entities
that have been reflected in production systems (e.g.
this is not hypothetical). One such entity who has
been frequently attacked is Donald Trump, whose
Wikipedia page was changed to include critical text
and inappropriate images, returned by Siri to real
user queries. The Wikipedia page on vandalism
include many such examples of famous politicians,
musicians, athletes and other popular entities being
subject to attacks on Wikipedia that were prop-
agated to users via Google or various news out-
lets (e.g. Thomas Edison’s page describing him as
a "douchebag", famed swimmer Chad Le Clos’s
page edited to say he literally "died at the hands of
Michael Phelps" when losing a race, etc.).

These attacks are just the tip of the iceberg for
disinformation, as attacks to Wikipedia are the eas-
iest to trace. Since production search engines index
the web and then answer questions about them, any
personal or company page can be used for attacks
(see this humorous attack for QA to Bing Chat
about Mark Reidl). And as the people directing
disinformation campaigns are likely motivated to
attack well-known entities rather than unknown
entities (for political or economic reasons), our pro-
posed setting of defending against popular entities
is well-motivated and is a serious problem affecting
current production systems today.

https://en.wikipedia.org/wiki/Vandalism_on_Wikipedia
https://twitter.com/mark_riedl/status/1637986261859442688?s=20
https://twitter.com/mark_riedl/status/1637986261859442688?s=20
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Figure 5: Main results showing the effect of data poisoning and various defense strategies on ATLAS. Left shows
TriviaQA while right shows results on Natural Questions. Q and C stand for question and context respectively.

B Hyperparameters

For all our experiments we use a cluster of V100
GPUs, with each job running on a 4 to 8 GPU node
and taking approximately 12-24 hours depending
on the model. We use the models as provided by
the original authors with default retriever hyperpa-
rameters. We use ATLAS’s XL version.

Following previous work in question answering,
we report Exact Match (EM) in all of our experi-
ments. We take the data from Longpre et al. (2021)
and split into equal dev and test sets. We use the
dev set to tune the CAR method’s hyperparameters
and use K = 5 for our experiments.

Along with the New C and Original C options,
the redundancy and majority vote methods also
have hyperparameters for using either the aug-
mented questions or the original question for the
final prediction (after generating and searching for
new contexts). Our tuning on the dev set indicated
that using the original question and the new con-
texts from searching with the augmented question
provides slightly higher performance (which makes
sense, since the original question is the most impor-
tant to answer). Thus, the process is first generating
augmented questions, then searching with those,
then doing inference with the original questions
and the newly retrieved contexts (and finally CAR,
if using the redundancy method).

C Results with ATLAS

We also show similar results using the ATLAS

model in Figure 5. These results suggest the same
conclusion as in the main paper (up to 14.7% EM
improvement on Natural Questions and up to 18.8%

EM improvement on TriviaQA). A minor differ-
ence is that ATLAS performs higher in terms of
absolute scores compared to FiD, and thus our
methods also scores higher in absolute terms. This
suggests that our methods will continue to work
well even with newer and better models.

D More Related Work

As a larger section of related work did not have
space in the main paper, we include more related
work here.

Data Poisoning Attacks Data poisoning attacks
in NLP have a long history, with several prominent
works appearing in recent years including (Wallace
et al., 2019a, 2020; Schwarzschild et al., 2021) fo-
cusing on various NLP tasks such as machine trans-
lation, language modeling, etc. However, in the
question answering space most adversarial work is
focused on making harder questions, rather than
simulating a real attack (Wallace et al., 2019b; Lee
et al., 2019). Those that do focus on human attacks
focus on the machine reading setting (Bartolo et al.,
2021).

As mentioned in the main text, a nascent line of
work has focused on knowledge conflicts in open-
domain question answering (Chen et al., 2022;
Longpre et al., 2021). These works’ main moti-
vation is to explore how ODQA models operate un-
der the influence of conflicts, mostly in the context
of non-parametric vs parametric knowledge. We
extend these works by using their methods as simu-
lated attacks on a knowledge source and proposing
efforts to defend against these attacks.



Open-Domain Question Answering Our work
builds off of recent advances in ODQA, such as us-
ing Fusion-in-Decoder (Izacard and Grave, 2021).
Other work such as DPR (Karpukhin et al., 2020)
showed promising results but has been improved
upon by models that encode a large number of con-
texts into a single reader model.

Query Augmentation Query augmentation is a
traditional information retrieval technique to aug-
ment a given query to find a better set of documents
(Singhal et al., 2001; Carpineto and Romano, 2012).
In classical terms, the strategy is usually to expand
the query, spelling out acronyms or adding syn-
onyms. Recently, work has begun to use neural
models to generate these expansions (Wang et al.,
2021; Claveau, 2021). In our work, we use a simi-
lar strategy to create new queries that will gather a
diverse set of passages.

Confidence and Calibration of QA Many
works have focused on calibrating QA models so
that they correctly reflect probabilities that equal
their actual correct answer rate (Clark and Gardner,
2017; Kamath et al., 2020; Si et al., 2022; Jiang
et al., 2021). Our proposed confidence method is
similar in that it measures when the model will be
more likely to be correct, however, it does not do
calibration in the sense of calibrated probabilities,
instead giving a single value of “confident" or “not
confident."

Answer redundancy has been studied before in
other NLP contexts, such as Downey et al. (2006)
in the information extraction task. We apply a sim-
ilar intuition of answer redundancy to the novel
context of document inputs for open-domain ques-
tion answering.

E Alternate Poisoning Attacks

In the main section of the paper, we used poison-
ing attacks based on articles. However, one could
attack a system directly by going after its retrieved
results, either randomly poisoning N% or poison-
ing the top N%. We note that we tried both settings
and found similar results, with the main difference
that model performance declines slower (as ran-
domly picking contexts to poison is less likely to
impact the model until higher levels of poisoning).

F Number of Augmented Queries

In Figure 4 we see the results for how the number
of augmented queries affects performance. Over-
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Figure 6: An ablation on Confidence from Answer Re-
dundancy (CAR) compared to their exact match scores
on the NQ 1-article poisoned setting. Those in the True
bar have greater than 5 unique passages that contain the
predicted answer string.

all, one query provides strong performance (above
the baseline original performance at 17.5% EM)
and multiple questions continue to show gains. We
note that this figure uses Natural Questions and
the 5-article poisoning setting with FiD, but other
settings showed roughly the same results. As in-
cluding more queries only seems to increase the
score, it’s possible that generating more than 10
augmented queries would show even better results.

G Why is performance not 0% at 100
poisoned documents?

To explore this question, we conducted a manual
analysis of 20 pairs of question and 100 docu-
ment passages on TriviaQA using FiD. We found
that 65% of cases were due to the model’s para-
metric knowledge, as there was no such answer
string in the input text. However, the answer was
generally very obvious, like “In which country
is Dubrovnik?" which is generally easier for the
model to predict (e.g. “Croatia"). In 35% of cases
there was a missing alias from the answer string
set, such as “What dance craze was named after
a city in South Carolina?" with an answer string
set of “Charleston rhythm", “Charleston (dance)",
“Charleston (dance move)", “Charleston dance",
and “The Charleston". FiD predicted “Charleston"
from the text, since “Charleston" was not in the
answer string set so it was not poisoned in the text.
Future work on data poisoning could improve on
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Figure 7: The number of poisoned passages given the article poisoning level. Notice that TriviaQA (tqa, right) has
more passages to poison and a more gradual slope of poisoning than Natural Questions (nq, left).

this category by developing more robust poisoning
techniques to aliases.

H Number of Poisoned Passages

In our experiments, we poisoned at the article level,
as an attacker might do to a specific entity. How-
ever, each Wikipedia article corresponds to more
than one passage which are what is used for re-
trieval. When we poison at the article level we
poison all passages in the article, so oftentimes
many passages are poisoned even when poisoning
one article. Furthermore, passages can only be poi-
soned if the answer is present in the passage (and
thus available to be replaced).

How many passages are poisoned at each article-
poisoning level? Figure 7 answers this question
and shows the number of poisoned passages vs the
article-poisoning level. We find that the number
of articles poisoned is much higher on TriviaQA,
which means that TriviaQA had a much higher
number of passages with the answer to begin with.

I Confidence from Answer Redundancy

We compare the confidence from answer redun-
dancy (CAR) to the actual exact match score (us-
ing the 1-article poisoning setting on Natural Ques-
tions) to show the effectiveness of this heuristic. In
Figure 6 we see the large gap between queries that
do not meet CAR and those that do (around 65%
absolute exact match). Error bars indicate a 95%
confidence interval.

J Alternate Answer Resolution
Strategies

Due to space and clarity for figures, we do not in-
clude all possible answer resolution strategies in
the main figures. Some potential alternate resolu-
tion stratgies we tried included:

• Using the new augmented questions with
CAR alone, without using them as a backup
for the original question. This is equivalent to
the majority vote method but using CAR to fil-
ter the question that get to vote. Although this
method performed well it consistently under-
performed our redundancy method and thus
we do not include it

• Using a majority vote over both the origi-
nal question’s prediction and and augmented
question’s predictions. This performed nearly
identically to the standard majority vote
method, hence we leave it out for clarity.

• Taking the difference between the the CAR
values of the original and augmented ques-
tions. This again greatly underperformed the
redundancy method and is therefore not in-
cluded

We encourage others who have new ideas for
answer resolution strategies to use our code as a
start to develop their method.



K Compute Cost of our Proposed
Method

Our method requires the addition of 1 call to GPT-
3’s API and 10 instances of additional search and
inferences of the ODQA model. As GPT-3 and
other large language models become more avail-
able and cheaper (as they have already started to
be) this will become cheaper to do with time. Fur-
thermore, retrieval takes milliseconds with mod-
ern indexes and methods adding only a negligible
overhead to standard ODQA pipelines. Thus, the
biggest overhead for our proposed method is the
additional inference steps after the retrieval steps
which, as mentioned in Appendix F, can be reduced
to only one and still see large gains.


